Discriminative Bayesian Nonparametric Clustering

نویسندگان

  • Vu Nguyen
  • Dinh Q. Phung
  • Trung Le
  • Hung Bui
چکیده

We propose a general framework for discriminative Bayesian nonparametric clustering to promote the inter-discrimination among the learned clusters in a fully Bayesian nonparametric (BNP) manner. Our method combines existing BNP clustering and discriminative models by enforcing latent cluster indices to be consistent with the predicted labels resulted from probabilistic discriminative model. This formulation results in a well-defined generative process wherein we can use either logistic regression or SVM for discrimination. Using the proposed framework, we develop two novel discriminative BNP variants: the discriminative Dirichlet process mixtures, and the discriminative-state infinite HMMs for sequential data. We develop efficient data-augmentation Gibbs samplers for posterior inference. Extensive experiments in image clustering and dynamic location clustering demonstrate that by encouraging discrimination between induced clusters, our model enhances the quality of clustering in comparison with the traditional generative BNP models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning with Nonparametric Clustering

Clustering is an essential problem in machine learning and data mining. One vital factor that impacts clustering performance is how to learn or design the data representation (or features). Fortunately, recent advances in deep learning can learn unsupervised features effectively, and have yielded state of the art performance in many classification problems, such as character recognition, object...

متن کامل

Max-Margin Nonparametric Latent Feature Models for Link Prediction

Link prediction is a fundamental task in statistical network analysis. Recent advances have been made on learning flexible nonparametric Bayesian latent feature models for link prediction. In this paper, we present a max-margin learning method for such nonparametric latent feature relational models. Our approach attempts to unite the ideas of max-margin learning and Bayesian nonparametrics to d...

متن کامل

Bayesian Framework for image segmentation Based on Nonparametric Clustering with Spatial Neighborhood Information

In this paper, we present a Bayesian framework for image segmentation based upon spatial nonparametric clustering. To estimate the density function on a nonparametric form, the 1 / 4

متن کامل

Nonparametric Bayesian Multi-task Learning with Max-margin Posterior Regularization

Learning a common latent representation can capture the relationships and share statistic strength among multiple tasks. To automatically resolve the unknown dimensionality of the latent representation, nonparametric Bayesian methods have been successfully developed with a generative process describing the observed data. In this paper, we present a discriminative approach to learning nonparamet...

متن کامل

Gender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model

Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017